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Recall the Vlasov Equation

Orf +v-Vof+E-V,f =0,
E(tx) ==V () (@),

Pt (:C) = SRS f(taxvv) dv,
f(O,x,v) = fo (a:,v).

Exercise 1

Let feC! (]R3 X R3). Prove that f satisfies

ess sup f (y + tv,w) € L* ((O,T) x RS L' (R%)) ) (2)

yeBR(z),
weBR(v)

ess sup |V f (y + tv,w)| € L% ((0,7) x R3; L' (R3) n L* (RY)). (3)

YeBR(z),
weBR(v)

Proof. Notice that if f e C! (R3 X ]R?’), then there exists a constant M such that if we
denote xar := XB,,(0) We get

|f (@, 0)] < [ flloo X1 (2) X () (4)
IVF (@) < [Vl xar () xar (v) - (5)
In particular this implies that
1f (y + to,w)| < [[fllo xar (y + tv) xar (w) (6)
VS (y+ tv,w)| < [Vl xar (y + tv) xr (w) - (7)

If we Bg(v) and w € Bys(0), then v € Bryas (0), and therefore, for any w € Br (v) we
get

[l X (y + tv) XR4+m (0) (8)
IV oo xas (y + t0) xR0 (v) - (9)
On the other hand we have |z| < |z — y|+]|y + tv|+|tv|, therefore if y € Br (z), w € Br (v),
w € By (0) and y + tv e By (0) we get x € B(1+t)(R+M) (0).

As a consequence, for any y € Br (z) and w € Bg (v) we have

f (v + to,w)| < | floo X(40y(R 1) (€) XRAM (V) (10)
VI (y + tv,w)| < VIl xaenrean (€) xren (v) - (11)



This allows us to conclude

ess sup f ess sup f (y + tv,w) |dv < (12)
(t,2)e(0,T)xR3 JR3 | ye Br(x),
weBR(v)
< oo [fll | X (@) xee (o) do (13)
(t,2)€(0,T) xR3 R3
4
< o7 flo (R+ M), (14)
ess sup j ess sup |V f (y + tv, w)| |dv < (15)
(t,2)e(0,T)xR3 JR3 | ye Bgr(x),
’UJEBR(’U)
< essw (V7L [ xaromen @) xeer (o) do (16)
(t,2)e(0,T)xR3 R3
4
< 37Vl (R+ M), (17)
1
2
2
ess sup f ess sup |V f (y +tv,w)|| dv| < (18)
(t,2)e(0,T)xR3 R3 | yeBgr(z),
weBR(v)
2
< essup 1970 ([ xaromin (@) veess )0 (19)
(t,2)€(0,T) xR2 RS
4 3
<1Vl (R4 a3, (20)

Exercise 2

Let f be a solution of the Vlasov equation (1) such that p € L ((0,T); L* (R*) n L (R?))
and with fy such that

ess sup fo (y + tv,w) € L” ((O,T) X Ri; L' (Rfj)) , (21)
yeBRr(z),
wEBR(U)
ess sup |V fo (y + tv,w)| € L% ((0,T) x R3; L' (R3) n L* (R3)). (22)
yEBR(:l:):
wEBR(v)
Prove that
Vof (t,,v) € L* ((0,T) x R3; L? (RY)) (23)

Hint: Recall that we saw in class that under this hypotheses there exists a € (0,1) such
that £ € L® ((O,T) Ol (]R3)) and use the explicit formula for f given through the
characteristics of the problem.



Proof. Recall that if we define X (s,t,2), V (s,t, z) as the characteristics associated to the
Vlasov equation such that

(s, X (s,t,2)), (24)

with z = (z,v) and Z = (X,V). Then, the solution f can be written as f (t,z) =
fo(Z(0,t,2)) and we can get

Vo f (t,Z) =V, (f() (Z (07t7 z))) (25)
= VUX (07t7 Z) ’ (vxf()) (Z (O,t,z)) + VUV (Ovtv Z) : (vvf0> (Z (07t7 Z)) : (26)

Now, on the one hand we get

X (s,t,2) =x—f V(r,t,z)dr =:c—(t—s)v+f (r—s)E(r,X (rt,z))dr, (27)

S

Vs, t,z) =v— J E (r, X (r,t,z))dr. (28)

Differentiating in v on both sides we get

VX (s,t,2) = —(t —s)id —f (r—s) VX (r,t,z) (Vi E) (r, X (r,t,z)) dr, (29)

V.,V (s,t,z) =id —J VX (s,t,2) (Vo E) (r, X (r,t,2)) dr. (30)

s

Given that E € L® ((0,T);C (R?)) we get

t
sup |V, X (s,t,2)| <t—s+T Vonof sup |V, X (r,t, 2)|dr. (31)
z S z
Using a Gromwall-like argument we get
sup |V, X (s,t,2)| < (t — s) (1 + eT”VwE”oo“—S)) <T (1 + eTQ"V*’E”w) . (32
z
and therefore
HVUXHOO <T (1 + eTZHVzEHOO> (33)
VoV, <1+ T2V, E|,, (1 + eTQHVzEHoo> , (34)
Moreover we get
T2
‘X (07t7 Z) - (:C—t?})‘ < HEHOO 77 ‘V(Oatvz> _U‘ < HEHOOT (35)



Therefore, we get that X (0,¢,2) — tv € Bypi, ., (z) and V(0,¢,2) € Byg r(v) and
2

therefore there exists a constant C' > 0 such that

Vo f (t,2,0)] = Vo (fo (X (0,2, 2),V (0,1, 2)))| (36)
< Vo X (0,¢,2) (Vo fo) (Z(0,t, 2))| (37)
+ VoV (0,¢,2) (Vo fo) (Z(0,¢,2))] (38)
< C|(Vufo) (X (0,2, 2),V (0,2, 2))| (39)
< C|(Vyfo) (X (0,t,2) — tv) + tv, V (0,t, 2))| (40)
< Cess sup |V o (y + tv,w)]. (41)

yeBR(z),

weBR(v)

This allows us to conclude.

O

Exercise 3

Let N be a positive 1nteger number and consider ¢ a bounded, continuous and even
potential and {(z;, vj)} | S R3xR3. Define {(z; (t),v; (t))}jvzl as the family of solutions
of the Newton equatlons

Gtv(j )t = *% Z]k\le Vo ($j (t) — Tk (t)) ) (42)
a:j 0) = acj,
v; (0) = v;

Consider the measure jo and p; given as'

(x—x5)6 (v—10y), (44)

(@ = (1) 8 (v —v; (1)) (45)

Z\H

i

Prove that u; is a weak solution of (1).

Proof. Let ¢ € CF (R? x R3). First of all we notice that

N
i )t — fm ng ;Vj;cp (2,0) 6 (& — 2; (£)) 6 (v — v (£)) da do (46)

1 N
- ¥ %o (t). (47)

'Notice that the notation 0 (x — x0) indicates the delta at the point z¢ and justifies the notation

f§w—xo ={ : ig;i: st(aj)é(a:—xo)da:=cp(ato). (43)



Given that x; and v; are continous for any j = 1,..., N, we get that t — {u, @) is
continous. Moreover we get

N
0 @) = 5 2 e s (1), (1) (48)
j=1
1 N
= s () (Vasp) (a5 (1), 05 (1) (49)
j=1
J 1 N
— 5 2 Vo () =2k () (Vo) (25 (), 0;(®) | (50)

ey
I
—

Now, on the one hand we have

- Vaps, ) = =, dive (vp)) = =(pit, v - Vaip) (51)

N
_ ng L@ % Zlv Ve (x,0) 8 (x — 2 (£) 6 (v—0; (t))dz dv  (52)

N
=~ D () (Vi) (2 (1) 05 1) (53)
j=1

which cancel the summation in (49). On the other hand, the density associated to p; is
given by

N
pi(@) = | du (o) ng, ;ZM 5 (1)) 6 (v — v (1)) do (54)

| XN
N; (x—aj(t (55)

Therefore, we get that the electric field is of the form

E(t,2) = =V (6 p0) (2) = = (V) * o) (2) (56)

N
:—jRB;vam—yw(y—xj(t»dy 67)
Z (x —xj; (t (58)

Finally, this implies

(E (L) Vo, ) = =, dive (E (8, 7) @) = =, B (¢,7) - Vo) (59)
131 &
[ e -
-Vvso(w v) 6 (x —x; (1) 0 (v —v; (1)) dz dv (61)
— > Vé(wi(t) = xk (1) - (Vo) (2 (1) v (2) - (62)
1<]k<N



This allows us to conclude that p; is a solution of

Ot +v - Vap + E - Vypp = 0.

(63)



