
Kinetic Equations
Solution to the Exercises
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Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Recall the Vlasov Equation
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Btf ` v ¨∇xf ` E ¨∇vf “ 0,

E pt, xq :“ ´∇
´

1
|x| ˚ ρt

¯

pxq ,

ρt pxq :“
ş

R3 f pt, x, vq dv,
f p0, x, vq “ f0 px, vq .

(1)

Exercise 1

Let f P C1
c

`

R3 ˆ R3
˘

. Prove that f satisfies

ess sup
yPBRpxq,
wPBRpvq

f py ` tv, wq P L8
`

p0, T q ˆ R3
x;L1

`

R3
v

˘˘

, (2)

ess sup
yPBRpxq,
wPBRpvq

|∇f py ` tv, wq| P L8
`

p0, T q ˆ R3
x;L1

`

R3
v

˘

X L2
`

R3
v

˘˘

. (3)

Proof. Notice that if f P C1
c

`

R3 ˆ R3
˘

, then there exists a constant M such that if we
denote χM :“ χBM p0q we get

|f px, vq| ď }f}8 χM pxqχM pvq , (4)

|∇f px, vq| ď }∇f}8 χM pxqχM pvq . (5)

In particular this implies that

|f py ` tv, wq| ď }f}8 χM py ` tvqχM pwq , (6)

|∇f py ` tv, wq| ď }∇f}8 χM py ` tvqχM pwq . (7)

If w P BR pvq and w P BM p0q, then v P BR`M p0q, and therefore, for any w P BR pvq we
get

|f py ` tv, wq| ď }f}8 χM py ` tvqχR`M pvq , (8)

|∇f py ` tv, wq| ď }∇f}8 χM py ` tvqχR`M pvq . (9)

On the other hand we have |x| ď |x´ y|`|y ` tv|`|tv|, therefore if y P BR pxq, w P BR pvq,
w P BM p0q and y ` tv P BM p0q we get x P Bp1`tqpR`Mq p0q.

As a consequence, for any y P BR pxq and w P BR pvq we have

|f py ` tv, wq| ď }f}8 χp1`tqpR`Mq pxqχR`M pvq , (10)

|∇f py ` tv, wq| ď }∇f}8 χp1`tqpR`Mq pxqχR`M pvq . (11)
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This allows us to conclude

ess sup
pt,xqPp0,T qˆR3

x

ż

R3

ˇ

ˇ

ˇ

ˇ

ess sup
yPBRpxq,
wPBRpvq

f py ` tv, wq

ˇ

ˇ

ˇ

ˇ

dv ď (12)

ď ess sup
pt,xqPp0,T qˆR3

x

}f}8

ż

R3

χp1`tqpR`Mq pxqχR`M pvq dv (13)

ď
4

3
π }f}8 pR`Mq

3 , (14)

ess sup
pt,xqPp0,T qˆR3

x

ż

R3

ˇ

ˇ

ˇ

ˇ

ess sup
yPBRpxq,
wPBRpvq

|∇f py ` tv, wq|
ˇ

ˇ

ˇ

ˇ

dv ď (15)

ď ess sup
pt,xqPp0,T qˆR3

x

}∇f}8
ż

R3

χp1`tqpR`Mq pxqχR`M pvq dv (16)

ď
4

3
π }∇f}8 pR`Mq

3 , (17)

ess sup
pt,xqPp0,T qˆR3

x

¨

˚

˝

ż

R3

ˇ

ˇ

ˇ

ˇ

ess sup
yPBRpxq,
wPBRpvq

|∇f py ` tv, wq|
ˇ

ˇ

ˇ

ˇ

2

dv

˛

‹

‚

1
2

ď (18)

ď ess sup
pt,xqPp0,T qˆR3

x

}∇f}8

ˆ
ż

R3

χp1`tqpR`Mq pxqχR`M pvq dv

˙
1
2

(19)

ď

c

4

3
π }∇f}8 pR`Mq

3
2 . (20)

Exercise 2

Let f be a solution of the Vlasov equation (1) such that ρ P L8
`

p0, T q ;L1
`

R3
˘

X L8
`

R3
˘˘

and with f0 such that

ess sup
yPBRpxq,
wPBRpvq

f0 py ` tv, wq P L
8
`

p0, T q ˆ R3
x;L1

`

R3
v

˘˘

, (21)

ess sup
yPBRpxq,
wPBRpvq

|∇f0 py ` tv, wq| P L8
`

p0, T q ˆ R3
x;L1

`

R3
v

˘

X L2
`

R3
v

˘˘

. (22)

Prove that

∇vf pt, x, vq P L
8
`

p0, T q ˆ R3
x;L2

`

R3
v

˘˘

(23)

Hint: Recall that we saw in class that under this hypotheses there exists α P p0, 1q such
that E P L8

`

p0, T q ;C1,α
`

R3
˘˘

and use the explicit formula for f given through the
characteristics of the problem.
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Proof. Recall that if we define X ps, t, zq, V ps, t, zq as the characteristics associated to the
Vlasov equation such that

$

&

%

BsX ps, t, zq “ V ps, t, zq ,
BsX ps, t, zq “ E ps,X ps, t, zqq ,
Z pt, t, zq “ z,

(24)

with z “ px, vq and Z “ pX,V q. Then, the solution f can be written as f pt, zq “
f0 pZ p0, t, zqq and we can get

∇vf pt, zq “ ∇v pf0 pZ p0, t, zqqq (25)

“ ∇vX p0, t, zq ¨ p∇xf0q pZ p0, t, zqq `∇vV p0, t, zq ¨ p∇vf0q pZ p0, t, zqq . (26)

Now, on the one hand we get

X ps, t, zq “ x´

ż t

s
V pr, t, zq dr “ x´ pt´ sq v `

ż t

s
pr ´ sqE pr,X pr, t, zqq dr, (27)

V ps, t, zq “ v ´

ż t

s
E pr,X pr, t, zqq dr. (28)

Differentiating in v on both sides we get

∇vX ps, t, zq “ ´ pt´ sq id´

ż t

s
pr ´ sq∇vX pr, t, zq p∇xEq pr,X pr, t, zqq dr, (29)

∇vV ps, t, zq “ id´

ż t

s
∇vX ps, t, zq p∇xEq pr,X pr, t, zqq dr. (30)

Given that E P L8
`

p0, T q ;C1,α
`

R3
˘˘

we get

sup
z
|∇vX ps, t, zq| ď t´ s` T }∇xE}8

ż t

s
sup
z
|∇vX pr, t, zq| dr. (31)

Using a Grömwall-like argument we get

sup
z
|∇vX ps, t, zq| ď pt´ sq

´

1` eT }∇xE}8pt´sq
¯

ď T
´

1` eT
2}∇xE}8

¯

, (32)

and therefore

}∇vX}8 ď T
´

1` eT
2}∇xE}8

¯

(33)

}∇vV }8 ď 1` T 2 }∇xE}8

´

1` eT
2}∇xE}8

¯

. (34)

Moreover we get

|X p0, t, zq ´ px´ tvq| ď }E}8
T 2

2
, |V p0, t, zq ´ v| ď }E}8 T. (35)
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Therefore, we get that X p0, t, zq ´ tv P B }E}8
2

T 2 pxq and V p0, t, zq P B}E}8T
pvq and

therefore there exists a constant C ą 0 such that

|∇vf pt, x, vq| “ |∇v pf0 pX p0, t, zq , V p0, t, zqqq| (36)

ď |∇vX p0, t, zq p∇xf0q pZ p0, t, zqq| (37)

` |∇vV p0, t, zq p∇vf0q pZ p0, t, zqq| (38)

ď C |p∇vf0q pX p0, t, zq , V p0, t, zqq| (39)

ď C |p∇vf0q ppX p0, t, zq ´ tvq ` tv, V p0, t, zqq| (40)

ď C ess sup
yPBRpxq,
wPBRpvq

|∇f0 py ` tv, wq| . (41)

This allows us to conclude.

Exercise 3

Let N be a positive integer number and consider φ a bounded, continuous and even
potential and tpxj , vjqu

N
j“1 Ď R3ˆR3. Define tpxj ptq , vj ptqqu

N
j“1 as the family of solutions

of the Newton equations
$

’

’

&

’

’

%

Btxj ptq “ vj ptq ,

Btvj ptq “ ´
1
N

řN
k“1∇φ pxj ptq ´ xk ptqq ,

xj p0q “ xj ,
vj p0q “ vj .

(42)

Consider the measure µ0 and µt given as1

µ0 px, vq :“
1

N

N
ÿ

j“1

δ px´ xjq δ pv ´ vjq , (44)

µt px, vq :“
1

N

N
ÿ

j“1

δ px´ xj ptqq δ pv ´ vj ptqq . (45)

Prove that µt is a weak solution of (1).

Proof. Let ϕ P C8c
`

R3 ˆ R3
˘

. First of all we notice that

xµt, ϕy : “

ż

R3

ż

R3

1

N

N
ÿ

j“1

ϕ px, vq δ px´ xj ptqq δ pv ´ vj ptqq dx dv (46)

“
1

N

N
ÿ

j“1

ϕ pxj ptq , vj ptqq . (47)

1Notice that the notation δ px´ x0q indicates the delta at the point x0 and justifies the notation
ż

A

δ px´ x0q dx “

"

1, x0 P A,
0, x0 R A,

ż

R3

ϕ pxq δ px´ x0q dx “ ϕ px0q . (43)
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Given that xj and vj are continous for any j “ 1, . . . , N , we get that t ÞÑ xµt, ϕy is
continous. Moreover we get

Btxµt, ϕy : “
1

N

N
ÿ

j“1

Bt rϕ pxj ptq , vj ptqqs (48)

“
1

N

N
ÿ

j“1

«

vj ptq ¨ p∇xϕq pxj ptq , vj ptqq (49)

´
1

N

N
ÿ

k“1

∇φ pxj ptq ´ xk ptqq ¨ p∇vϕq pxj ptq , vj ptqq

ff

. (50)

Now, on the one hand we have

xv ¨∇xµt, ϕy “ ´xµt,divx pvϕqy “ ´xµt, v ¨∇xϕy (51)

“ ´

ż

R3

ż

R3

1

N

N
ÿ

j“1

v ¨∇xϕ px, vq δ px´ xj ptqq δ pv ´ vj ptqq dx dv (52)

“ ´
1

N

N
ÿ

j“1

vj ptq ¨ p∇xϕq pxj ptq , vj ptqq , (53)

which cancel the summation in (49). On the other hand, the density associated to µt is
given by

ρt pxq “

ż

R3

dµt px, vq “

ż

R3

1

N

N
ÿ

j“1

δ px´ xj ptqq δ pv ´ vj ptqq dv (54)

“
1

N

N
ÿ

j“1

δ px´ xj ptqq . (55)

Therefore, we get that the electric field is of the form

E pt, xq “ ´∇ pφ ˚ ρtq pxq “ ´ pp∇φq ˚ ρtq pxq (56)

“ ´

ż

R3

1

N

N
ÿ

j“1

∇φ px´ yq δ py ´ xj ptqq dy (57)

“ ´
1

N

N
ÿ

j“1

∇φ px´ xj ptqq . (58)

Finally, this implies

xE pt, ¨q ¨∇vµt, ϕy “ ´xµt, divv pE pt, ¨qϕqy “ ´xµt, E pt, ¨q ¨∇vϕy (59)

“

ż

R3

ż

R3

1

N

N
ÿ

j“1

˜

1

N

N
ÿ

k“1

∇φ px´ xk ptqq

¸

¨ (60)

¨∇vϕ px, vq δ px´ xj ptqq δ pv ´ vj ptqq dx dv (61)

“
1

N2

ÿ

1ďj,kďN

∇φ pxj ptq ´ xk ptqq ¨ p∇vϕq pxj ptq , vj ptqq . (62)
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This allows us to conclude that µt is a solution of

Btµt ` v ¨∇xµt ` E ¨∇vµt “ 0. (63)
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